Preparation of Hollow Fe2O3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries

نویسندگان

  • Jung Sang Cho
  • Jin-Sung Park
  • Yun Chan Kang
چکیده

A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation of a FeSe-C composite nanofiber exhibiting a hierarchical structure. These nanofibers transform into aggregate-free hollow Fe2O3 powders via the complete oxidation of FeSe and combustion of carbon. Indeed, the zero- (0D) and one-dimensional (1D) FeSe nanocrystals transform into the hollow-structured Fe2O3 nanopowders via a nanoscale Kirkendall diffusion process, thus conserving their overall morphology. The discharge capacities for the 1000th cycle of the hollow-structured Fe2O3 nanopowders obtained from the FeSe-C composite nanofibers prepared at selenization temperatures of 500, 800, and 1000 °C at a current density of 1 A g-1 are 932, 767, and 544 mA h g-1, respectively; and their capacity retentions from the second cycle are 88, 92, and 78%, respectively. The high structural stabilities of these hollow Fe2O3 nanopowders during repeated lithium insertion/desertion processes result in superior lithium-ion storage performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries.

A novel structure denoted a "hollow nanosphere aggregate" is synthesized by introducing nanoscale Kirkendall diffusion to the spray pyrolysis process. The hollow Fe2O3 nanosphere aggregates with spherical shape and micron size are synthesized as the first target material. A solid iron oxide-carbon composite powder that is prepared by a one-pot spray pyrolysis process is transformed into the hol...

متن کامل

From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries.

Synthetic montroseite VOOH has been successfully prepared via a simple template-free hydrothermal route on a large scale for the first time-after sixty years of delay. The as-obtained sample shows a hierarchical morphology of urchin-like nanoarchitecture with hollow interiors consisting of well-crystalline nanorods standing vertically on the shell surface. Time-dependent experiments illustrated...

متن کامل

Synthesis of hollow cobalt oxide nanopowders by a salt-assisted spray pyrolysis process applying nanoscale Kirkendall diffusion and their electrochemical properties.

A new concept for preparing hollow metal oxide nanopowders by salt-assisted spray pyrolysis applying nanoscale Kirkendall diffusion is introduced. The composite powders of metal oxide and indecomposable metal salt are prepared by spray pyrolysis. Post-treatment under a reducing atmosphere and subsequent washing using distilled water produce aggregation-free metal nanopowders. The metal nanopowd...

متن کامل

Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect.

Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni...

متن کامل

Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries

A novel one-dimensional nanohybrid comprised of conductive graphitic carbon (GC)-coated hollow FeSe2 nanospheres decorating reduced graphene oxide (rGO) nanofiber (hollow nanosphere FeSe2@GC-rGO) was designed as an efficient anode material for sodium ion batteries and synthesized by introducing the nanoscale Kirkendall effect into the electrospinning method. The electrospun nanofibers transform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016